The Principles of Mathematics (1903)

§ 3

The Philosophy of Mathematics has been hitherto as controversial, obscure and unprogressive as the other branches of philosophy. Although it was generally agreed that mathematics is in some sense true, philosophers disputed as to what mathematical propositions really meant: although something was true, no two people were agreed as to what it was that was true, and if something was known no one knew what it was that was known. So long, however, as this was doubtful, it could hardly be said that any certain and exact knowledge was to be obtained in mathematics. We find, accordingly, that idealists have tended more and more to regard all mathematics as dealing with mere appearance, while empiricists have held everything mathematical to be approximation to some exact truth about which they had nothing to tell us. This state of things, it must be confessed, was thoroughly unsatisfactory. Philosophy asks of Mathematics: What does it mean? Mathematics in the past was unable to answer, and Philosophy answered by introducing the totally irrelevant notion of mind. But now Mathematics is able to answer, so far at least as to reduce the whole of its propositions to certain fundamental notions of logic. At this point, the discussion must be resumed by Philosophy. I shall endeavour to indicate what are the fundamental notions involved, to prove at length that no others occur in mathematics, and to point out briefly the philosophical difficulties involved in the analysis of these notions. A complete treatment of these difficulties would involve a treatise on Logic, which will not be found in the following pages.(§ 3 ¶ 1)