The twofold nature of the verb, as actual verb and as verbal noun, may be expressed, if all verbs are held to be relations, as the difference between a relation in itself and a relation actually relating. Consider, for example, the proposition A differs from B.
The constituents of this propostion, if we analyze it, appear to be only A, difference, B. Yet these constituents, thus placed side by side, do not reconstitute the proposition. The difference which occurs in the proposition actually relates A and B, whereas the difference after analysis is a notion which has no connection with A and B. It may be said that we ought, in the analysis, to mention the relations which difference has to A and B, relations which are expressed by is and from when we say A is different from B.
These relations consist in the fact that A is referent and B relatum with respect to difference. But A, referent, difference, relatum, B,
is still merely a list of terms, not a proposition. A proposition, in fact, is essentially a unity, and when analysis has destroyed the unity, no enumeration of constituents will restore the proposition. The verb, when used as a verb, embodies the unity of the proposition, and is thus distinguishable from the verb considered as a term, though I do not know how to give a clear account of the precise nature of the distinction.(§ 54 ¶ 1)
The Principles of Mathematics was written by Bertrand Russell, and published in in 1903. It is now available in the Public Domain.